
Malaysian Journal of Mathematical Sciences 16(3): 517–536 (2022)
https://doi.org/10.47836/mjms.16.3.08

Malaysian Journal of Mathematical Sciences

Journal homepage: https://einspem.upm.edu.my/journal

A Fractional Order SITRModel for Forecasting of Transmission of COVID-19:
Sensitivity Statistical Analysis

Al-Zahrani, S. M.1, Elsmih, F. E. I.2,3, Al-Zahrani, K. S.4, and Saber, S. ∗2,5

1Faculty of Arts and Science in Almandaq, Al-Baha University, Saudi Arabia
2Department of Mathematics, Faculty of Sciences and Arts in Baljurashi, Al-Baha University, Saudi

Arabia
3Department of Mathematics, Faculty of Sciences, Peace University, Sudan

4Department of Biology, Faculty of Sciences and Arts in Almandaq, Al-Baha University, Saudi Arabia
5Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Egypt

E-mail: sayedkay@yahoo.com
∗Corresponding author

Received: 28 January 2022
Accepted: 25 April 2022

Abstract

In this work, we investigate the effects of the contact rate between people on the covid-19 virus
transmission through a susceptible-infected-treatment-recovered (SITR) fractional mathemati-
cal model. Several strategies are introduced, and the development methodology is constructed
up in various cases based on the rate of individual contact, due to confinement and social dis-
tancing rules, which can be useful in reducing infection. The existence and uniqueness of the
proposed model solution are established, as well as the basic reproduction number. The basic
reproduction number has been used to control the dynamics of the fractional SITR model com-
pletely, which determines whether or not the infection is extinguished. The global stability of
the infection-free balance and endemic equilibrium point of the proposed model has been fully
established using the Lyapunov-LaSalle type theorem. Furthermore, a sensitivity analysis is car-
ried out to find out which parameter is the most dominant to affect the disease’s endemicity and
to see how changes in parameters affect Covid-19’s beginning disease transmission. The frac-
tional Adams-Bashforth method is used to compute an iterative solution to the model. Finally,
using the model parameter values to explain the importance of the arbitrary fractional-order
derivative, the numerical results using MATLAB are presented.
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1 Introduction

Fractional calculus is a widening of the non-integer order of integral and derivative. The first
application of fractional calculuswas due toAbel in his solution to the Tautocrone problem [1]. As
a result, it’s used mostly in physics, biology, medicine, viscoelasticity, bioengineering, economics,
and control theory [2]-[18]. As compared to the ordinary derivative, which is a local operator, the
fractional-order derivative expands the equilibrium field of dynamical systems.

In epidemiology, there has been a lot of work done with fractional-order derivatives. Recent
high-profile outbreaks, like those caused by Ebola, Zika, Pandemic influenza, Middle East Respi-
ratory Syndrome (MERS), and COVID-19, have highlighted the global importance of infectious
diseases and the need for coordinated efforts to prevent outbreaks. Fractional order models for in-
fluenza, dengue fever, malaria, and tuberculosis, for example [19]-[29]. The COVID-19 pandemic
has already spread throughout the world and the people are aware of the disease and they are
using precautions against the pandemic. But, still, the covid-19 is spreading very quickly. Global
efforts begin with a discussion of numerous healthcare solutions to reduce the impact of the cur-
rent coronavirus on the population (COVID-19). In 2019, a new coronavirus (COVID-19) was
found in Wuhan, China. According to WHO, the majority of patients infected with the COVID-19
virus will have a mild to moderate viral infection and will recover without needing any additional
treatment. People who are older, as well as those who have underlying health issues like cardio-
vascular disease, diabetes, chronic respiratory illness, and cancer, are more vulnerable to serious
diseases.

It’s essential to create amathematicalmodel to evaluate the coronavirus’s transmission dynam-
ics and transmissibility. Many scientists have sought to determine the basic reproduction number
R0 using ordinary differential equations, or utilizing serial intervals and the intrinsic growth rate
[30]-[32]. The number of coronavirus cases in Saudi Arabiawas reported to be 547,090 on Septem-
ber 30, 2021, with 536,125 recovered patients and 8,713 deaths. On the other hand, the recovery
ratio is greater than the death ratio in terms of numbers. The graphic depicts the number of people
who died as a result of COVID-19 in the last 100 days (20 June to 30 September 2021).

To stop the spread of the diseases, a vaccine is needed. But, in absence of the vaccine, peo-
ple must maintain social distancing. In order to maintain the social distancing must obey the
modeling rule (see for example [33]-[40]). Moreover, it is notable that media platforms, through
campaigns explaining the importance of social distancing, use of face masks, non-pharmaceutical
interventions, hand sanitization, social isolation of the exposed individuals, etc., have a tremen-
dous impact on reducing the virus by spreading awareness all over the world (see for example
[41]-[42]).

In this paper, a fractional-order (COVID-19) SITRmodel is investigated to explain, understand,
and forecast the outbreaks of COVID-19 in Saudi Arabia. The proposed model is extended to a
system of five first-order ordinary differential equations, three of which have quadratic nonlinear-
ity, with five unknowns, which are the numbers of different groups of people (healthy, infected,
ill under 65 years of age, ill over 65 years of age, dead) (see [43]). The model includes nine con-
stant coefficients that explain the effect of various processes such as birth rate, death rate, contact
rate, reactivity reduction, and others. The SITR model consists of four compartment: susceptible
S(t), infected I(t), treatment T(t), and recovered R(t). Moreover, the susceptible S(t) is separated
into two parts: S1(t) and S2(t). The state variables S1(t), S2(t), I(t), T(t) and R(t) represent, re-
spectively, the densities of people who are yet not infected, the densities of not infected old age
or seriously diseased people, the infected people which are infected with this serious disease at
the time t, the treatment of this virus, and the recovery of those people who recovered from this
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serious disease at time t by using these precautionary measures and it is noticed that a large num-
ber of such category exist. The proposed model aims to study the lockdown effect and quarantine
probabilities, in controlling the COVID-19 spread in Saudi Arabia. The basic reproduction num-
ber R0 and its impact on the covid-19 pandemic are described. The basic reproduction number
R0 is one of the most crucial quantities in infectious diseases, as R0 measures how contagious a
disease is [39]. The global stability of the infection-free and endemic equilibrium point of the pro-
posedmodel has been fully established using the Lyapunov-LaSalle type theorem. Some new and
important developments for searching for analytical solitary wave solutions and stability analysis
for differential equations (see for example [44]-[47]). In this work, a fractional-order (COVID-
19) SITR model with nonlinear incidence rate is considered in the sense of Caputo derivativeDκ,
0 < κ ≤ 1, and is given by

Dκ
S1(t) = Λ− βI(t)S1(t)− δβT(t)− S1(t),

Dκ
S2(t) = Λ− βI(t)S2(t)− δβT(t)− S2(t),

Dκ
I(t) = −µI(t) + βI(t)(S1(t) + S2(t)) + δβT(t)− αI(t) + σI(t),

Dκ
T(t) = µI(t)− αT(t)− ρT(t) + εT(t) + ψT(t),

Dκ
R(t) = −αR(t) + ρT(t),

(1)

with initial data S1(0) = I1, S2(0) = I2, I(0) = I3, T(0) = I4, and R(0) = I5. The biological
meanings of the parameters in the model (1.1) are existed in Table 1.

Table 1: Parameters description for the novel (COVID-19) SITR model.

Parameters Description
Λ the rate of natural birth
β the rate of contact
δ the treatment to reduce infection
α the rate of death
µ the rate of recovery
σ the rate of tiredness, dry cough, and fever
ρ the infection rate of treatment
ε the rate of sleep
ψ the rate of healthy food

This paper’s contribution is to demonstrate the superiority of fractional order modeling over
the integer-order one. The stabilization of the infection is achieved earlier because of the rules of
social distancing and confinement. Preventative measures’ effectiveness, potential control strate-
gies, and the prediction of future outbreaks were evaluated by using the simplified nonlinear frac-
tional mathematical (COVID-19) SITR model with fractal parameters. The existence of a solution
to such a generalized system (1.1) within the desired function’s positive range of values is illus-
trated. The system’s stationary points are discussed. We derived an infectious-free equilibrium
and endemic-equilibrium points from local and global stability using the reproduction rate. The
normalized forward sensitivity index of the basic reproduction number, R0, is used to perform
local sensitivity statistical analysis. Furthermore, simulation findings indicate that increasing pre-
emptive priority has a positive impact. The model is also developed using a numerical algorithm,
and the results of a computational experiment are presented. The results of this manuscript may
well complement the existing literature as [48]-[54].

519



S. M. Al-Zahraniet al. Malaysian J. Math. Sci. 16(3): 517–536 (2022) 517 - 536

2 Properties of Solutions

This section will discuss the solutions’ existence, uniqueness, non-negativity, and bounded-
ness. By assuming the following Ω = {(S1,S2, I,T,R) ∈ R5

+ : S1 ≥ 0, S2 ≥ 0, I ≥ 0, T ≥ 0, R ≥
0, max (|S1|, |S2|, |I|, |T|, |R|) ≤ η}. Following [49], the existence and uniqueness of the fractional-
order model’s solutions (1.1) are established in the region Ω× (0, τ ].

Theorem 2.1. If X0 = (S1(0),S2(0), I(0),T(0),R(0)) ∈ Ω is an initial condition, the solution X =
(S1(t),S2(t), I(t),T(t),R(t)) ∈ Ω to the fractional-order model (1.1) is unique, for t ≥ 0.

Proof. Suppose that Θ(X) = (Θ1(X),Θ2(X),Θ3(X),Θ4(X),Θ5(X)) is a mapping with

Θ1(X) = Λ− βI(t)S1(t)− δβT(t)− S1(t),

Θ2(X) = Λ− βI(t)S2(t)− δβT(t)− S2(t),

Θ3(X) = −µI(t) + βI(t)(S1(t) + S2(t)) + δβT(t)− αI(t) + σI(t),

Θ4(X) = µI(t)− αT(t)− ρT(t) + εT(t) + ψT(t),

Θ5(X) = −αR(t) + ρT(t).

Hence, for X,X ∈ Ω, one obtains

‖Θ(X)−Θ(X)‖ = |Θ1(X)−Θ1(X)|+ |Θ2(X)−Θ2(X)|+ |Θ3(X)−Θ3(X)|
+ |Θ4(X)−Θ4(X)|+ |Θ5(X)−Θ5(X)|
≤ (2ηβ + 1)|S1 − S1|+ (2ηβ + 1)|S2 − S2|+ (4ηβ + 2µ+ σ + α)|I− I|
+ (3ηβ + α+ 2ρ+ ε+ ψ)|T− T|+ ρ|R− R|
≤ Γ‖X −X‖,

(2)

where
Γ = max {2ηβ + 1, 4ηβ + 2µ+ σ + α, 3ηβ + α+ 2ρ+ ε+ ψ, ρ} .

As a result, Θ(X) satisfies the Lipschitz condition, implying that the fractional-order model (1.1)
solution exists and is unique.

2.1 The Solution’s Non-Negativity and Boundedness

Let R+ be the set of all non-negative real numbers and let Ω+ = {(S1,S2, I, T,R) ∈ R5
+ : S1 ∈

R+,S2 ∈ R+, I ∈ R+, T ∈ R+, R ∈ R+,Λ > βδI4}.

Theorem 2.2. The fractional-order model (1.1) has non-negative solutions.

Proof. One has
Dκ

S1(t)|S1=0 > 0,

Dκ
S2(t)|S2=0 > 0,

Dκ
I(t)|I=0 = βδI4 > 0,

Dκ
T(t)|T=0 = µI3 > 0,

Dκ
R(t)|R=0 = ρI4 > 0.

Thus, by using Lemmas 5 and 6 in [50], the solutions of the fractional-order model (1.1) are non-
negative.
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Theorem 2.3. The fractional-order model (1.1) has uniformly bounded solutions start in Ω+.

Proof. The total population at time t is denoted by

N(t) = S1(t) + S2(t) + I(t) + T(t) + R(t).

By adding the equations in the fractional-order model (1.1) directly, one gets

DκN(t) = 2Λ− (S1 + S2 + (α− σ)I + (α+ δβ − ε− ψ)T + αR)

≤ 2Λ− λN(t),

where λ = min{1, α− σ, α+ δβ − ε− ψ, α}. Thus

Dκ
N(t) + λN(t) ≤ 2Λ.

Following to [51]; Lemma 9, we get

0 ≤ N(t) ≤ N(0)Eκ(−λtκ) + tκEκ,κ+1(−λtκ)),

where Eκ is the Mittag-Leffler function. Following Lemma 5 and Corollary 6 in [50], one obtains:

0 ≤ N(t) ≤ 2Λ

λ
, t −→∞.

Thus, starting in Ω+, the fractional-order model (1.1) solutions are uniformly bounded in the
region

Z =

{
(S1,S2, I,T,R) ∈ Ω+ : 0 ≤ S1 + S2 + I + T + R ≤ 2Λ

λ

}
.

The set Z is obviously positively invariant in the fractional-order model (1.1).

3 Stability Analysis for Equilibriums

In this section, we compute the basic reproduction number R0. The local and global asymp-
totic stability of the infectious-free equilibrium point is also investigated by building appropriate
Lyapunov functions. The local and global asymptotic stability of the endemic equilibrium point
is also being studied.

3.1 The Reproduction Number

The state variables (S1(t),S2(t), I(t),T(t),R(t)) remain in the biologically meaningful region
{(S1,S2, I, T,R) : S1 ≥ 0, S2 ≥ 0, I ≥ 0, T ≥ 0, R ≥ 0} is a positively invariant for model (1.1).
It’s easy to prove that the region Ω is a positively invariant set of the model (1.1).

For I = 0, we can easily obtain the infection-free equilibrium P0 =
(

Λ
α ,

Λ
α , 0, 0, 0

)
. Let y =

(I, T,R,S1,S2)T , then the fractional-order model (1.1) can be written as

y′ = F(y)−Z(y),
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where

F(y) =


βI(t)(S1(t) + S2(t))

0
0
0
0

 , Z(y) =


µI(t)− δβT(t) + αI(t)− σI(t)

−µI(t) + αT(t) + ρT(t)− εT(t)− ψT(t)
αR(t)− ρT(t)

−b+ βI(t)S1(t) + δβT(t) + S1(t)
−b+ βI(t)S2(t) + δβT(t) + S2(t)

 .
The Jacobian matrices of F(y) and Z(y) at P0 are, respectively,

F =


2βΛ
α 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , V =

[
A2×2 O2×3

C3×2 D3×3

]
,

where

A2×2 =

[
α+ µ− σ −δβ
−µ α+ ρ− ε− ψ

]
, D3×3 =

α 0 0
0 α 0
0 0 α

 , C3×2 =

 0 −ρ
Λβ
α δβ

Λβ
α δβ

 .
Thus

V −1 =

[
A−1

2×2 O2×3

E3×2 D−1
3×3

]
,E3×2 = −D−1

3×3C3×2A
−1
2×2.

That is

V −1 =



α+ρ−ε−ψ
(α+ρ−ε−ψ)(α+µ−σ)−δβµ

δβ
(α+ρ−ε−ψ)(α+µ−σ)−δβµ 0 0 0

µ
(α+ρ−ε−ψ)(α+µ−σ)−δβµ

α+µ−σ
(α+ρ−ε−ψ)(α+µ−σ)−δβµ 0 0 0

µ
(α+ρ−ε−ψ)(α+µ−σ)−δβµ

α+µ−σ
(α+ρ−ε−ψ)(α+µ−σ)−δβµ α3 0 0

ρµα3β2

(α+ρ−ε−ψ)(α+µ−σ)−δβµ
ρα3β2(α+µ−σ)

(α+ρ−ε−ψ)(α+µ−σ)−δβµ 0 α3 0
ρµα3β2

(α+ρ−ε−ψ)(α+µ−σ)−δβµ
ρα3β2(α+µ−σ)

(α+ρ−ε−ψ)(α+µ−σ)−δβµ 0 0 α3

 .

The spectral radius of the matrix F.V −1 can be calculated as follows:

ρ(F.V −1) =
δβµ

(α+ ρ− ε− ψ)(α+ µ− σ − 2Λβ
α )

.

The fractional-order model’s basic reproduction number R0 is then

R0 =
δβµ

(α+ ρ− ε− ψ)
(
α+ µ− σ − 2Λβ

α

) . (3)

3.2 Infectious-Free Equilibrium and Its Stability

Lemma 3.1. The infection-free equilibrium P0 =
(

Λ
α ,

Λ
α , 0, 0, 0

)
is locally asymptotically stable in Ω if

R0 < 1 and unstable if R0 > 1.

Proof. For the fractional-order model (1.1) at P0, the Jacobian matrix J(P0) is given by

J(P0) =


−α 0 −Λβ

α −δβ 0

0 −α −Λβ
α −δβ 0

0 0 −α− µ+ σ + 2Λβ
α δβ 0

0 0 µ −α− ρ+ ε+ ψ 0
0 0 0 ρ −α

 ,
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and its characteristic equation is given by

(λ+ α)(λ+ α)(λ+ α)[λ2 + (α+ ρ− ε− ψ + α+ µ− σ − 2Λβ

α
)λ

+ (α+ ρ− ε− ψ)(α+ µ− σ − 2Λβ

α
)− δβµ] = 0.

(4)

From Eq. (3.2), the characteristic values are λ1 = λ2 = λ3 = −α, and the other can obtains from
the equation

λ2 + (α+ ρ− ε− ψ + α+ µ− σ − 2Λβ

α
)λ+

(
α+ ρ− ε− ψ

)(
α+ µ− σ − 2Λβ

α

)
− δβµ = 0. (5)

The infection-free equilibrium point P0 is stable according to Routh-Hurwits criteria, if and only if
all of the characteristic values are < 0 [52]. Obviously, λ1, λ2, λ3, are negative. Thus, the stability
of Eq. (3.3) relies on whether λ4 < 0, λ5 < 0. The sufficient condition of stability is given by
a direct computation of λ4, λ5. Thus, from (3.1), the condition that the system (1.1) is locally
asymptotically stable at P0 is R0 < 1. However, the system (1.1) is unstable if R0 > 1. Thus the
proof follows.

Lemma 3.2. The infection-free equilibrium point P0 is globally asymptotically stable in Ω if R0 < 1 and
unstable if R0 > 1.

Proof. To show this result, one constructs a suitable Lyapunov function L1 as follows:

L1 = µI +

(
α+ µ− σ − 2Λβ

α

)
T.

With respect to t, the fractional derivative of L1 is

DκL1 = µDκI +

(
α+ µ− σ − 2Λβ

α

)
DκT

= µ

[
β(S1 + S2)− 2Λβ

α

]
I +

[
δβµ− (α+ ρ− ε− ψ)

(
α+ µ− σ − 2Λβ

α

)]
T

≤
[
δβµ− (α+ ρ− ε− ψ)

(
α+ µ− σ − 2Λβ

α

)]
T.

Hence, if R0 < 1, then DκL1 ≤ 0. Moreover, the largest invariant set of {(S1,S2, I,T,R) ∈ Ω :
DκL1 = 0} is the singleton {P0}. Thus, P0 is globally asymptotically stable by using LaSalle’s
invariance principle [53].

3.3 The Stability of Endemic-Equilibrium Point

To obtain the stability of the endemic-equilibrium point, one assumes that

Dκ
S1(t) = 0, Dκ

S2(t) = 0, Dκ
I(t) = 0, Dκ

T(t) = 0, Dκ
R(t) = 0.
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The unique endemic-equilibrium point for I∗ > 0 is P ∗ = (S∗1,S
∗
2, I
∗,T∗,R∗), where

S
∗
1 =

1

2βR0(α+ ρ− ε− ψ)
+

Λ

α
,

S
∗
2 = S∗1 ,

I
∗ =

(α+ ρ− ε− ψ)(Λ− αS∗1 )

S∗1β(α+ ρ− ε− ψ) + δβµ
,

T
∗ =

Λµ− αµS∗1
S∗1β(α+ ρ− ε− ψ) + δβµ

,

R
∗ =

Λµρ− ραµS∗1
S∗1αβ(α+ ρ− ε− ψ) + δβµα

.

Lemma 3.3. In Ω, the endemic equilibrium point P ∗ is asymptotically stable locally.

Proof. The Jacobian matrix J(P ∗) of the fractional order system (1.1) is given by the matrix

J(P ∗) =


−βI∗ − α 0 −βS∗1 −δβ 0

0 −βI∗ − α −βS∗2 −δβ 0
βI∗ βI∗ −α− µ+ σ + βS∗1 + βS∗2 δβ 0
0 0 µ −α− ρ+ ε+ ψ 0
0 0 0 ρ −α

 ,
and its characteristic equation is given by

(λ+ α)(λ+ βI + α)(a1λ
3 + a2λ

2 + a3λ+ a4) = 0, (6)

where
`1 = 1,

`2 = 3α+ µ+ ρ− ε− ψ − σ + β(I∗ − S
∗
1 − S

∗
2),

`3 = (βI∗ + α)(α+ µ− σ − β(S∗1 + S∗2 )) + β2
I
∗(S∗2 − S

∗
1)− δβµ

+ (α+ ρ− ε− ψ) (2α+ µ− σ − β(I∗ − S
∗
1 − S

∗
2)) ,

`4 = (βI∗ + α)(α+ µ− σ − β(S∗1 + S
∗
2)) (α+ ρ− ε− ψ)

+ β2
I
∗(S∗2 − S

∗
1) (α+ ρ− ε− ψ)− δβµ(βI∗ + α).

From Eq. (3.4), the characteristic values are given by: λ1 = −α, λ2 = −βI∗ − α, and the other
values can be obtained from the equation

`1λ
3 + `2λ

2 + `3λ+ `4 = 0.

Based on Routh-Hurwitz conditions [52], the Routh-Hurwitz array for the Jacobian matrix J(P ∗)
is as follows:

D1(P ∗) = −

∣∣∣∣∣∣∣∣
`1 `2
`2 `4

(`2`3−`4`1)
`2

0

`4 0

∣∣∣∣∣∣∣∣ .
Verifying that (`2`3−`4`1)

`2
has the same sign with `3, the other three eigenvalues λ3, λ4, λ5 will then

have negative real parts. Since `1, `2, `3, `4, (`2`3−`4`1)
`2

are all positive and `2`3 > `4`1 hold, the
conditions of stability of Routh-Hurwitz are thus fulfilled. Thus, the endemic-equilibrium point
P ∗ is locally asymptotically stable.
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Lemma 3.4 ([21]). Let θ(t) ∈ R+ be a continuous differentiable function. Thus, for any time
instant t ≥ t0,

Dκ
(
θ(t)− θ∗ − θ∗ ln

θ(t)

θ∗

)
≤
(

1− θ∗

θ(t)

)
Dκθ(t), θ∗ ∈ R+.

Lemma 3.5. Under the condition R0 > 1, the endemic equilibrium point P ∗ is globally asymptotically
stable if S1

S∗
1
> S2

S∗
2
> T

T∗ >
I
∗

I
> 1, and µ+ α > σ + β(S∗1 + S∗2).

Proof. The model (1.1) has unique positive equilibrium P ∗ if R0 > 1 holds. Then we consider
L2 : Ω −→ R as the following Lyapunov function:

L2(S1,S2, I) =
(
S1 − S

∗
1 − S

∗
1 ln

S1

S∗1

)
+
(
S2 − S

∗
2 − S

∗
2 ln

S2

S∗2

)
+
(
I− I

∗ − I
∗ ln

I∗

I

)
.

From Lemma 4, with respect to t, one obtains the fractional derivative of L2 as

DκL2(S1,S2, I) ≤
(
S1 − S∗1
S1

)
Dκ

S1 +

(
S2 − S∗2
S2

)
Dκ

S2 +

(
I− I∗

I

)
Dκ

I

=

(
S1 − S∗1
S1

)
(Λ− βIS1 − δβT− S1) +

(
S2 − S∗2
S2

)
(Λ− βIS2 − δβT− S2)

+

(
I− I∗

I

)
(−µI + βI(S1 + S2) + δβT− αI + σI)

=

(
S1 − S∗1
S1

)
(−β(IS1 − I

∗
S
∗
1)− δβ(T− T

∗)− (S1 − S
∗
1))

+

(
S2 − S∗2
S2

)
(−β(IS2 − I

∗
S
∗
2)− δβ(T− T

∗)− (S2 − S
∗
2))

+

(
I− I∗

I

)
(−(µ+ α− σ)(I− I

∗) + βI(S1 + S2)− βI∗(S∗1 + S
∗
2) + δβ(T− T

∗))

≤ −βI∗ (S1 − S∗1)
2

S1
− βI (S2 − S∗2)

2

S2
− (µ+ α− σ − (S∗1 + S

∗
2)β)

(I− I∗)
2

I

− β
( (S1 − S∗1)

2

S1
+

(S2 − S∗2)
2

S2

)
(I∗ − I) +

βδ

S1
(S1 − S

∗
1)(T∗ − T)

+
βδ

S2
(S2 − S

∗
2)(T∗ − T) +

βδ

I
(I− I

∗)(T− T
∗).

Thus, DκL2(S1,S2, I) < 0 in V . Furthermore DκL2(S1,S2, I) = 0 implies that S1 = S∗1, S2 = S∗2,
and I = I∗. Therefore, the singleton {P ∗} is the only invariant set such that DκL2(S1,S2, I) = 0.
The Lasalle invariance principle (see [55], [19]) gives conclusion thatP ∗ is globally asymptotically
stable.

4 Statistical Analysis

Sensitivity statistical analysis is used to evaluate the relative influence of several factors on a
model’s stability when data is unknown. The analysis can also determine which parameters are
crucial. Using both local and global techniques, one can calculate the sensitivity indices of the
basic reproduction number, R0, with respect to the parameters of the model.
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4.1 Local Sensitivity Statistical Analysis

In local sensitivity analysis, the normalized forward sensitivity index is utilized. With respect
to the parameters in our model, the sensitivity index of R0 is computed as follows:

ΓR0
υ =

∂R0

∂υ
× υ

R0
,

where υ is a value from Table 2, andR0 is derived by using Eq (3.1). By substituting the parameter
values into Eq (3.1), the sensitivity indices ofR0 computed withMaple are listed in Table 2. Thus,
one obtains

∂R0

∂Λ
=

2δβ2

α (α+ ρ− ε− ψ)
(
α+ µ− σ − 2Λβ

α

)2 > 0,

∂R0

∂β
=
δµ
(
α+ µ− σ − 2Λβ

α

)
− (δβµ)

(
− 2Λ

α

)
(α+ ρ− ε− ψ)

(
α+ µ− σ − 2Λβ

α

)2 > 0,

∂R0

∂δ
=

βµ

(α+ ρ− ε− ψ)
(
α+ µ− σ − 2Λβ

α

) < 0,

∂R0

∂α
=
−δβµ

[(
α+ µ− σ − 2Λβ

α

)
+ (α+ ρ− ε− ψ)

(
1 + 2Λβ

α2

)]
(α+ ρ− ε− ψ)

2
(
α+ µ− σ − 2Λβ

α

)2 < 0,

∂R0

∂µ
=

δβ
(
α− σ − 2Λβ

α

)
(α+ ρ− ε− ψ)

(
α+ µ− σ − 2Λβ

α

)2 < 0,

∂R0

∂σ
=

δβµ

(α+ ρ− ε− ψ)
(
α+ µ− σ − 2Λβ

α

)2 > 0,

∂R0

∂ρ
=

−δβµ

(α+ ρ− ε− ψ)
2
(
α+ µ− σ − 2Λβ

α

) > 0,

∂R0

∂ε
=

δβµ

(α+ ρ− ε− ψ)
2
(
α+ µ− σ − 2Λβ

α

) < 0,

∂R0

∂ψ
=

δβµ

(α+ ρ− ε− ψ)
2
(
α+ µ− σ − 2Λβ

α

) < 0.

(7)

By substituting the parameter values into Eq (4.1), we can determine the sensitivity of R0 as fol-
lows:

ΓR0

Λ =
∂R0

∂Λ
× Λ

R0
= −18.6, ΓR0

ρ =
∂R0

∂ρ
× ρ

R0
= −1.2,

ΓR0
σ =

∂R0

∂σ
× σ

R0
= −0.11, ΓR0

β =
∂R0

∂β
× β

R0
= −0.0094,

ΓR0

δ =
∂R0

∂δ
× δ

R0
= 0.18, ΓR0

ε =
∂R0

∂ε
× ε

R0
= 0.40,

ΓR0
µ =

∂R0

∂µ
× µ

R0
= 0.59, ΓR0

ψ =
∂R0

∂ψ
× ψ

R0
= 0.80,

ΓR0
α =

∂R0

∂α
× α

R0
= 4.2.

(8)
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Thus, one obtains

Table 2: Parameters description for the novel (COVID-19) SITR model.

Parameters Description Sensitivity Index
Λ 0.3 -18.6
ρ 0.3 -1.2
σ 0.005 -0.11
β 0.35 -0.0094
δ 0.3 0.18
ε 0.1 0.40
µ 0.55 0.59
ψ 0.2 0.80
α 0.25 4.2

4.2 Dynamics of (S1 − S2 − I− T− R)

In this subsection, we illustrate the dynamics of S1(t), S2(t), I(t), T(t), and R(t) for different
values of κwhen R0 = 1.5024.
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Figure 1: Dynamics of S1(t), S2(t), I(t), T(t), and R(t) for different values of κwhen R0 = 0.4190.
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Figure 2: Dynamics of S1(t), S2(t), I(t), T(t), and R(t) for different values of κwhen R0 = 1.5024.

4.3 Contact Rate β

We study the effects of the β contact rate in the COVID-19 spread dynamics. The effects of
different contact rates on the downward modulation of this virus are illustrated in Figures 3 to 10.
As illustrated in Fig. 3 (c), Fig. 5 (c), Fig. 7 (c), and Fig. 9 (c), a reduced contact rate, analogous
to the effects of fractional order, significantly delays the peak and reduces the number of infected
cases (c). The effect of contact rate on the dynamics is significant for the other fractional orders,
as seen in Figs. 5-7. In infected cases, reducing contact parameters leads to a significant decrease,
where decreasing contact rates while keeping other parameters constant maintains R0 below 1.
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Vaccines are still recommended to minimize the rate of Cov-19 contact and spread. It should be
noted that by using the smaller fractional order κ to control the transmission rate will result in a
substantial reduction in the infected cases.
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Figure 3: Solution profiles for S1(t), S2(t), I(t), T(t), and R(t) with different β when κ = 1 andR0 = 0.4190.

0 10 20 30 40 50
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

 Time

S
1
(t

)

 

 
β = 0.26

β = 0.28

β = 0.3

β = 0.32

(a)

0 10 20 30 40 50

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

 Time

S
2
(t

)

 

 
β = 0.26

β = 0.28

β = 0.3

β = 0.32

(b)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Time

I(
t)

 

 
β = 0.26

β = 0.28

β = 0.3

β = 0.32

(c)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 Time

T
(t

)

 

 
β = 0.26

β = 0.28

β = 0.3

β = 0.32

(d)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 Time

R
(t

)

 

 
β = 0.26

β = 0.28

β = 0.3

β = 0.32

(e)

Figure 4: Solution profiles for S1(t), S2(t), I(t), T(t), and R(t) with different β when κ = 1 andR0 = 1.5024.
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Figure 5: Solution profiles for S1(t), S2(t), I(t), T(t), and R(t) with different β when κ = 0.9 andR0 = 0.4190.
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Figure 6: Solution profiles for S1(t), S2(t), I(t), T(t), and R(t) with different β when κ = 0.9 andR0 = 1.5024.
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Figure 7: Solution profiles for S1(t), S2(t), I(t), T(t), and R(t) with different β when κ = 0.8 andR0 = 0.4190.
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Figure 8: Solution profiles for S1(t), S2(t), I(t), T(t), and R(t) with different β when κ = 0.8 andR0 = 1.5024.
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Figure 9: Solution profiles for S1(t), S2(t), I(t), T(t), and R(t) with different β when κ = 0.7 andR0 = 0.4190.
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Figure 10: Solution profiles for S1(t), S2(t), I(t), T(t), and R(t) with different β when κ = 0.7 andR0 = 1.5024.

4.4 Phase Plot (S1 − S2 − I− T− R)

The absence of infection outbreaks and a noticeable decrease in infectious waves were seen in
our findings. Fig. 11 shows the simulation output of the COVID-19 model for R0 = 0.4190 < 1.
Lastly, the step plots for S1 − S2 − I − T − R states are shown in Figs. 11 and 12, respectively,
supporting local stability for R0 = 1.5024. Numerical simulation of the epidemic model of frac-
tional order (1.1), when β = 0.26 andR0 = 1.5024 > 1 (each infected individual infects more than
one other populationmember and spreads a self-sustaining group of infectious individuals), with
Table 2 parameter values.
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(b) κ = 0.85
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Figure 11: Phase plot (S1 − S2 − I− T− R) for R0 = 0.4190.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Time

T
h

e
 p

h
a

s
e
 l

a
b

e
l 

o
f 

S
1
(t

),
S

2
(2

),
 I

(t
),

 T
(t

),
 R

(t
) 

fo
r ν

=
0
.7

5

 

 

S1(t)
S2(t)
I(t)
T(t)
R(t)

(a) κ = 0.75

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Time

T
h

e
 p

h
a

s
e
 l

a
b

e
l 

o
f 

S
1
(t

),
S

2
(2

),
 I

(t
),

 T
(t

),
 R

(t
) 

fo
r ν

=
0
.8

5

 

 

S1(t)
S2(t)
I(t)
T(t)
R(t)

(b) κ = 0.85

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Time
T

h
e
 p

h
a

s
e
 l

a
b

e
l 

o
f 

S
1
(t

),
S

2
(2

),
 I
(t

),
 T

(t
),

 R
(t

) 
fo

r ν
=

0
.9

 

 

S1(t)
S2(t)
I(t)
T(t)
R(t)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Time

T
h

e
 p

h
a

s
e
 l

a
b

e
l 

o
f 

S
1
(t

),
S

2
(2

),
 I

(t
),

 T
(t

),
 R

(t
) 

fo
r ν

=
0
.9

5

 

 

S1(t)
S2(t)
I(t)
T(t)
R(t)

(d) κ = 0.95

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Time

T
h

e
 p

h
a

s
e

 l
a

b
e

l 
o

f 
S

1
(t

),
S

2
(2

),
 I
(t

),
 T

(t
),

 R
(t

) 
fo

r ν
=

1

 

 

S1(t)
S2(t)
I(t)
T(t)
R(t)

(e) κ = 0.1

(e) κ = 0.9

Figure 12: Phase plot (S1 − S2 − I− T− R) for R0 = 1.5024.

5 Discussion of Results

Numerical simulations of the proposed time-fractional order COVID-19 system are presented
in investigating the spread and containment strategies of coronavirus infection. Several intrin-
sic aspects of the COVID-19 model that could be detected in time using the fractional derivative
(0 < κ < 1) as compared to the classical order κ = 1 are of interest. The numerical COVID-19
model proposed for different fractional-order values κ is simulated using a set of reasonable pa-
rameter values in Table 1 to support analytical results and numerically evaluate control strategy
effectiveness. When β = 0.2 (hence R0 = 0.4190 < 1), Fig. 1 shows the global stability of the
model’s infection-free equilibrium (1.1) under potentially different conditions. As predicted, the
solutions of (1.1) converge to a single disease-free equilibrium P0 = (1.2000, 1.2000, 0, 0, 0). As a
result, P0 is globally asymptotically stable for the system (1.1).

Fractional orders have distinct effects; the solution curves for 0 < κ < 1 show a delay at the
epidemic peak and flatten out faster, as shown in Fig. 1 (c), (d), and (e). The effect of κ is sub-
stantially more pronounced for smaller orders; for example, compare κ = 0.9 and κ = 0.6 in Fig.
1 (d), (e). Although the number of infected individuals has decreased for smaller fractional or-
ders, the number of people who are susceptible has increased (see Fig. 1(a)). Figures 2 shows
the global stabilities of the endemic model equilibrium (1.1) under potentially various situations
when β = 0.28 (such that R0 = 1.5024 > 1). The other parameter values are listed in Table 1.
As predicted, the solutions of (1.1) converge to the unique endemic equilibrium of P ∗. According
to Lemma 5, P ∗ = (0.7090, 0.7090, 0.3202, 0.7044, 2.8176), is globally asymptotically stable. Frac-
tional orders have significant consequences; the solution trajectories for 0 < κ < 1 show a delay at
the epidemic peak and flatten off faster, as shown in Fig. (c), (d), and (d) are the second, third,
and fourth sentences, respectively (e). The impact of κ is significantly more evident for smaller
orders; for example, compare κ = 0.9 and κ = 0.6 in Fig. (d) 2 (e). Although the number of in-
fected individuals has decreased significantly for smaller fractional orders, the number of people
who are susceptible has increased (see Fig. 2(a)).

One of the great advantages of the Caputo fractional derivative is that it minimizes the number
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of susceptible and infected while maximizing the number of recovered population from covid-19
virus. Also, we note that when the S1(t) decreases, T (t), as well asR(t), get increases. However, at
some point, both the I(t) start to decrease. And this getsR(t) increased as seen in Figures 1. 2 (e).
This is one of the advantages of fractional order over integer order. Moreover, one can propose ap-
propriate strategies to control and prevent the disease based on that data. According to Theorem
3, one should set the parameters such thatR0 < 1. This is an effective strategy for controlling and
preventing the disease. The sensitivity indices indicated the complexities of variable R0 relation-
ship to the model parameters. The positive (negative) index indicates that raising the parameter
value leads the value of R0 to increase (decrease). Figure 2 displays the sensitivity index of each
parameter in model (4.2).

Finally, from the sensitivity indices in Table 2, one can see that when the parameter values δ, ε,
µ, ψ, and α increasewhile the other parameter values stay constant, the value ofR0 increases. This
means an increase in the endemic rate of the disease, as the indicators show positive signs. On the
other hand, the value ofR0 decreases if the parameter valuesΛ, ρ, σ, and β are decreasedwhile the
rest of the parameter values stay constant. This indicates a decrease in illness endurance because
the indicator has a negative sign. Mortality α and healthy eating rate ψ are the most sensitive
parameters. The recovery rate µ and sleep rate ε are the other key parameters that are sensitive.

6 Conclusions

The epidemiological-based fractional SITR model and the conditions for infection-free equi-
librium asymptotic stability were investigated in this study. The proposed model is extended to a
system of five first-order ordinary differential equations, three of which have quadratic nonlinear-
ity, with five unknowns, which are the numbers of different groups of people (healthy, infected, ill
under 65 years of age, ill over 65 years of age, dead). Themodel includes nine constant coefficients
that explain the effect of various processes such as birth rate, death rate, contact rate, reactivity
reduction, and others. In the sense of four susceptible (S), infected (I), treatment (T), and recov-
ered (R) individuals, the existence and uniqueness of the SITR fractal model, expanded by the
Caputo fractional derivative, is established. The basic reproduction number was obtained, which
determines whether or not the infection is extinguished. The global stability of the infection-free
balance and endemic equilibrium point of the system (1.1) has been fully established using the
Lyapunov-LaSalle type theorem. The basic reproduction numberR0 has been used to control the
dynamics of the fractional SITRmodel completely. The proposed model only has a globally stable
infection-free equilibrium if the reproduction number is less than or equal to one, which means
that the infection-free equilibriumwill eventually die out. This implies that the greater a system’s
quarantine probabilities, the lower its chances of becoming endemic.

Ourmodel simulations and predictions suggest that the new coronavirus diseasemay showos-
cillatory dynamics in the future, but can be controlled by maintaining social distance. Our model
predicts that the disease can even be eliminated by isolating populations with coronavirus symp-
toms under strict hygiene measures and social distances. Our study could also have a signifi-
cant impact on the size and duration of the epidemic by implementing quarantine programs in a
timely manner, avoiding mass rallies, rallies, and social distances, and implementing comprehen-
sive blockade measures.

Future expansions of this study can be applied to other states to provide pandemic predictions.
Our future researchmay also consider applying optimal control theory to provide decision-makers
with better strategies for controlling the spread of COVID19. This COVID 19 model can also be
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used to study other infectious disease systems.
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